

IEC TS 61851-27

Edition 1.0 2026-02

TECHNICAL SPECIFICATION

**Electric vehicle conductive charging system -
Part 27: EV supply equipment with automatic docking of a vehicle coupler
according to IEC 62196-2, IEC 62196-3 or IEC TS 62196-3-1**

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	8
3 Terms and definitions	8
3.1 Electric supply equipment	9
3.2 Functions	9
3.3 Defined areas and spaces	9
3.4 Service and usage	10
4 System overview	10
4.1 General architecture	10
4.2 Coordinate systems	12
4.2.1 Overview	12
4.2.2 Reference coordinate system	13
4.2.3 Vehicle connector coordinate system	13
4.2.4 Vehicle inlet coordinate system	13
4.2.5 Coordinate system of vehicle	13
4.3 Home space	13
4.4 Typical docking and undocking process	13
5 Classification	15
6 Service conditions	15
7 Protection against electric shock	16
8 Protection against thermal incident	16
9 Protection against mechanically caused injury	16
9.1 General	16
9.2 Limitation of force and pressure	17
9.3 Maximum velocity and energy	17
9.4 Warning of manipulator movement	17
9.5 Emergency stop (optional)	17
10 Constructional requirements	18
10.1 General	18
10.2 Resilience to movements of the vehicle	18
10.3 Limitation of force and torque onto the vehicle	18
10.4 Prevention of unnecessary movement of accessible moving parts outside of the home space	19
10.5 Indication that manipulator is within home space	19
10.6 Automatic undocking	19
10.7 Manual undocking	19
10.8 Installation variation	19
10.9 Accessibility	20
10.10 Mechanical impact	20
11 Marking and instructions	20
11.1 General	20
11.2 Marking	20
11.3 User manual	20
11.4 Installation manual	20

12 Measurement and test methods	21
12.1 General	21
12.2 Interoperability test	21
Annex A (informative) Examples of topologies of charging sites with aEVSE	22
A.1 General	22
A.2 Examples	22
Annex B (informative) General considerations for specification of an obstacle-free space for automatic docking and undocking	26
B.1 General	26
B.2 Obstacle-free space for proprietary applications	26
B.3 Example of interoperable obstacle-free space	27
B.3.1 General	27
B.3.2 Vehicle movement	27
B.3.3 Collision avoidance and detection	27
B.3.4 Robustness of intruding vehicle parts	27
B.3.5 Dimension of the interoperable obstacle-free space	28
Annex C (normative) Specification of mating space and coordinate systems	29
C.1 Mating space	29
C.2 Mating space format	29
C.3 Mating space definitions	30
C.3.1 General	30
C.3.2 Predefined mating space	30
C.3.3 Custom mating space	37
C.4 Installation tolerances	38
Annex D (informative) Manually triggered operation of automatic docking and undocking function	39
D.1 General	39
D.2 User interface	40
D.3 Indication/user feedback	40
D.4 User manual/installation instructions	41
Annex E (informative) Interoperability test for aEVSE	42
E.1 Principle	42
E.2 Test bench	42
E.3 Preparation of DUT	43
E.4 Procedure	43
E.5 Expression of results	44
E.6 Test report	44
Annex F (informative) Alphabetically sorted list of terms	45
Bibliography	46
Figure 1 – Example of a block diagram of a vehicle according to ISO TS 5474-5:2024 with an aEVSE	11
Figure 2 – Examples of aEVSE configurations	12
Figure 3 – Coordinate systems for aEVSE	13
Figure 4 – Activity diagram of typical docking and undocking process	14
Figure 5 – Mating space	18
Figure A.1 – Example of topology of aEVSE for parallel parking of a single vehicle	23
Figure A.2 – Example of topology of aEVSE for parallel parking of multiple vehicles	24

Figure A.3 – Example of topology of aEVSE with perpendicular parking	24
Figure A.4 – Example of topology of aEVSE with flexible parking of a single vehicle.....	25
Figure B.1 – Example of an interoperable obstacle-free space	28
Figure C.1 – Example of installed aEVSE with predefined mating space "small".....	32
Figure C.2 – Example of installed aEVSE with predefined mating space "medium low"	34
Figure C.3 – Illustration of predefined mating space "medium high"	34
Figure C.4 – Illustration of predefined mating space "large low"	35
Figure C.5 – Illustration of predefined mating space "large high"	36
Figure C.6 – Illustration of predefined mating space "extra large"	37
Figure C.7 – Illustration of example of custom mating space	38
Figure D.1 – Typical activity diagram of manually triggered docking and undocking process without communication	40
Figure E.1 – Example of a mating space in a reference coordinate system	43
Figure E.2 – Example of inlet displacement and rotation during boarding and alighting of a passenger	44
Table C.1 – Mating space format.....	29
Table C.2 – Parameters of mating space "small".....	31
Table C.3 – Parameters of mating space "medium low"	33
Table C.4 – Parameters of mating space "medium high"	34
Table C.5 – Parameters of mating space "large low"	35
Table C.6 – Parameters of mating space "large high"	35
Table C.7 – Parameters of mating space "extra large"	36
Table C.8 – Parameters of custom mating space	37
Table C.9 – Example of installation tolerances with mating space "medium low"	38
Table E.1 – Example of parameters of a mating space	43
Table F.1 – Alphabetically sorted list of terms	45

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Electric vehicle conductive charging system -**Part 27: EV supply equipment with automatic docking of a vehicle coupler
according to IEC 62196-2, IEC 62196-3 or IEC TS 62196-3-1****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 61851-27 has been prepared by IEC technical committee 69: Electrical power/energy transfer systems for electrically propelled road vehicles and industrial trucks. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
69/1109/DTS	69/1126/RVDTs

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

In this document, the following print type is used: *test specifications: in italic type*.

A list of all parts in the IEC 61851 series, published under the general title *Electric vehicle conductive charging system*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

This part of the IEC 61851 series provides requirements for EV supply equipment with automatic docking for the transfer of electric energy between EV supply equipment and electric road vehicles. The vehicle and the EV supply equipment make up a complete system that is covered by a number of IEC and ISO Standards.

Automatic docking is indispensable for autonomous vehicles, and it is also helpful for disabled users of electric vehicles and for all users of electric vehicles seeking additional comfort. In the case of public electric vehicle supply equipment, automatic docking can also provide a convenient solution for queued vehicles, through automatic electric vehicle supply equipment that is either fully mobile or movable on rails. Automatic docking can increase the number of electric vehicles that are available to the grid to provide grid services.

Within the IEC 61851 series, the following documents cover different aspects of automatic docking:

- IEC 61851-23-1¹: DC electric vehicle charging station with an automated connection device;
- IEC TS 61851-26: EV supply equipment with automatic docking of a vehicle coupler located at the underbody of an electric vehicle;
- IEC TS 61851-28²: Communication between EV supply equipment with automatic docking and vehicles.

Automatic docking enables conductive energy transfer at the complete range of voltage and current as specified in the following documents:

- IEC 61851-1: General requirements, which is a system standard that serves as a basis for all the subsequent standards in the series; it is the product standard for mode 3 EV supply equipment;
- IEC 61851-23: DC electric vehicle supply equipment;
- IEC 61851-23-3³: DC electric vehicle supply equipment for megawatt charging systems.

At the time of publication of this document, automatic conductive energy transfer is still in an early development stage. The intention of this document is to guide further development of the technology. As a Technical Specification, it is possible that this document does not yet contain the full specification for interoperability as needed especially for public applications.

¹ Under preparation. Stage at the time of publication: IEC/CCDV 61851-23-1:2025.

² Under preparation. Stage at the time of publication: IEC TS/ACD 61851-28:2024.

³ Under preparation. Stage at the time of publication: IEC/CCDV 61851-23-3:2025.

1 Scope

This document, in combination with IEC 61851-1 or IEC 61851-23, gives the requirements for EV supply equipment with automatic docking and undocking functions (aEVSE) of a vehicle coupler according to IEC 62196-2, IEC 62196-3 or IEC TS 62196-3-1 for power transfer with electrically propelled road vehicles according to ISO TS 5474-5.

Use of aEVSE with the megawatt charging system is under consideration.

NOTE 1 Where this document refers to IEC 61851-23 and IEC 62196-3 or IEC TS 62196-3-1, it is intended to alternatively use IEC 61851-23-3 and IEC TS 63379⁴.

This document provides requirements for aEVSE with a single vehicle connector.

Requirements for aEVSE with more than one vehicle connector are under consideration.

This document only applies to aEVSE with automatic couplers of category 1, which use a vehicle coupler defined by IEC 62196-2, IEC 62196-3 or IEC TS 62196-3-1.

NOTE 2 Category 1 is planned to also include the use of an electro-mechanical interface defined by IEC TS 63379.

This document only specifies automatic conductive energy transfer using a vehicle connector and a vehicle inlet; it does not specify automatic conductive power transfer using a plug and a socket-outlet.

This document does not apply to aEVSE with automatic couplers of category 2, which use an electro-mechanical interface defined by EN 50696.

NOTE 3 Category 2 is planned to also include the use of an electro-mechanical interface defined by IEC 63407⁵.

This document does not apply to aEVSE with automatic coupler of category 3 (see IEC TS 61851-26).

NOTE 4 Category 3 is planned to use the electro-mechanical interface for AC up to 22 kW defined by IEC TS 63644⁶. Another document that extends category 3 and defines an electro-mechanical interface for combined AC/DC power transfer is under consideration.

EMC requirements for EV supply equipment are defined in IEC 61851-21-2.

Interoperable communication for docking and undocking between an aEVSE and an EV, extending the communication between an EV supply equipment and an EV as specified in IEC 61851-1, IEC 61851-23, IEC 61851-24 and the ISO 15118 series, is under consideration.

NOTE 5 Where this document refers to "interoperable communication for docking and undocking", it is intended to use communication according to IEC TS 61851-28. However, at the time of publication of this document, IEC TS 61851-28 has not yet reached sufficient maturity to be normatively referenced.

This document does not cover all safety aspects related to maintenance.

⁴ Under preparation. Stage at the time of publication: IEC TS/CDTS 63379:2025.

⁵ Under preparation. Stage at the time of publication: IEC/CCDV 63407:2024.

⁶ Under preparation. Stage at time of publication: IEC TS/ACD 63644:2025.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-7-722, *Low-voltage electrical installations - Part 7-722: Requirements for special installations or locations - Supplies for electric vehicles*

IEC 61851-1, *Electric vehicle conductive charging system - Part 1: General requirements*

IEC 61851-23:2023, *Electric vehicle conductive charging system - Part 23: DC electric vehicle supply equipment*

IEC 62196-2, *Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles - Part 2: Dimensional compatibility requirements for AC pin and contact-tube accessories*

IEC 62196-3, *Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles - Part 3: Dimensional compatibility requirements for DC and AC/DC pin and contact-tube vehicle couplers*

IEC TS 62196-3-1, *Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles - Part 3-1: Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system*

ISO TS 5474-5:2024, *Electrically propelled road vehicles - Functional requirements and safety requirements for power transfer between vehicle and external electric circuit - Part 5: Automatic conductive power transfer*

ISO 10218-1, *Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots*

ISO 12100:2010, *Safety of machinery - General principles for design - Risk assessment and risk reduction*

ISO TS 15066:2016, *Robots and robotic devices - Collaborative robots*

Bibliography

- [1] Knipschild, L., Sicking, F., Künne, B. and Bartz, M. (2025) *Design requirements for aEVCS: Experimental analysis of inlet motion under load* [online]. Dortmund: TU Dortmund [viewed 2025-11-06]. Available at <http://dx.doi.org/10.17877/DE290R-25500>
- [2] IEC 60050-195, *International Electrotechnical Vocabulary (IEV) - Part 195: Earthing and protection against electric shock*, available at www.electropedia.org
- [3] IEC 60204-1, *Safety of machinery - Electrical equipment of machines - Part 1: General requirements*
- [4] IEC 61851-23-1, *Electric vehicle conductive charging system - Part 23-1: DC electric vehicle supply equipment - Automated connection device*⁹
- [5] IEC 61851-21-2, *Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems*
- [6] IEC 61851-23-3, *Electric vehicle conductive charging system - Part 23-3: DC electric vehicle supply equipment - Megawatt charging systems*¹⁰
- [7] IEC 61851-24, *Electric vehicle conductive charging system - Part 24: Digital communication between a DC EV supply equipment and an electric vehicle for control of DC charging*
- [8] IEC TS 61851-26, *Electric vehicle conductive charging system - EV supply equipment with automatic docking of a vehicle coupler located at the underbody of an electric vehicle*
- [9] IEC TS 61851-28, *Electric vehicle conductive charging system - Part 28: Communication between automatic EV supply equipment and vehicles*¹¹
- [10] IEC 62196 (all parts), *Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles*
- [11] IEC 62196-1:2022, *Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of electric vehicles - Part 1: General requirements*
- [12] IEC TS 63379, *Vehicle connector, vehicle inlet and cable assembly for megawatt DC charging*¹²
- [13] IEC TS 63644, *Coupler for contact interface for automated connection device underbody (ACD-U) systems*¹³
- [14] ISO 6707-1:2020, *Buildings and civil engineering works - Vocabulary - Part 1: General terms*

⁹ Under preparation. Stage at the time of publication: IEC/CCDV 61851-23-1:2025.

¹⁰ Under preparation. Stage at the time of publication: IEC/CCDV 61851-23-3:2025.

¹¹ Under preparation. Stage at the time of publication: IEC TS/ACD 61851-28:2024.

¹² Under preparation. Stage at the time of publication: IEC TS/CDTS 63379:2025.

¹³ Under preparation. Stage at time of publication: IEC TS/ACD 63644:2025.

- [15] IEC 63407, *Conductive charging of electric vehicles - Contact interface for automated connection device (ACD)*¹⁴
- [16] ISO 9241 (all parts), *Ergonomics of human-system interaction*
- [17] ISO TR 11065:1992, *Industrial automation glossary*
- [18] ISO 12768-1, *Intelligent transport systems - Automated valet driving systems (AVDS) – Requirements, system framework, communication interfaces and test procedures*¹⁵
- [19] ISO 14539:2000, *Manipulating industrial robots - Object handling with grasp-type grippers - Vocabulary and presentation of characteristics*
- [20] ISO 15118 (all parts), *Road vehicles - Vehicle to grid communication interface*
- [21] EN 842:1997, *Safety of machinery - Visual danger signals - General requirements, design and testing*
EN 842/AMD1:2008
- [22] EN 50696, *Contact interface for automated connection device*
- [23] ISO 10218-1:2011, *Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots*¹⁶

¹⁴ Under preparation. Stage at the time of publication: IEC/CCDV 63407:2024.

¹⁵ Under preparation. Stage at the time of publication: ISO/CD 12768-1:2024.

¹⁶ This publication has been withdrawn.